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Abstract Equilibrium theory occupies an important position in chemistry and it
is traditionally based on thermodynamics. A novel mathematical approach to chem-
ical equilibrium theory for gaseous systems at constant temperature and pressure is
developed. Six theorems are presented logically which illustrate the power of math-
ematics to explain chemical observations and these are combined logically to create
a coherent system. This mathematical treatment provides more insight into chemical
equilibrium and creates more tools that can be used to investigate complex situations.
Although some of the issues covered have previously been given in the literature,
new mathematical representations are provided. Compared to traditional treatments,
the new approach relies on straightforward mathematics and less on thermodynamics,
thus, giving a new and complementary perspective on equilibrium theory. It provides
a new theoretical basis for a thorough and deep presentation of traditional chemi-
cal equilibrium. This work demonstrates that new research in a traditional field such
as equilibrium theory, generally thought to have been completed many years ago,
can still offer new insights and that more efficient ways to present the contents can
be established. The work presented here can be considered appropriate as part of a
mathematical chemistry course at University level.
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1 Introduction

Since Newton’s time, mathematical reasoning has been valued for revealing much
in the natural sciences. The direct result of this attitude is that traditional theories,
such as classical mechanics, thermodynamics, statistical physics, and quantum
mechanics, etc., are established among the magnificent achievements of mankind.
A common feature of the classical theories is that an all-embracing coherent
system is established to provide insight on a variety of connected phenomena.
Among these amazing insights were the fact that many phenomena, apparently
different at first sight, were found to have common features. [1] To establish
theoretical systems using mathematics is still valued greatly in today’s scientific
activity.

Chemical equilibrium theory, which is very important in chemistry, is based on ther-
modynamics [2–4]. However, this thermodynamic presentation does not automatically
provide enough mathematical tools that are required to investigate complicated cases,
especially for gaseous systems at constant temperature T and pressure P which are
often more complex than liquid systems. This problem is emphasized in a survey
conducted by Cheung [5] which shows that the traditional training of chemists is
often not sufficiently focused on the treatment of complex equilibrium systems.
All the problems described by Cheung involve ideal gas systems at constant T
and P. The main conclusion from his survey is that these difficulties are caused
not only because the concepts of chemical equilibrium are abstract but also be-
cause the presentation of the theory is inadequate. Thus, it is clearly beneficial
to develop a more elaborate theoretical system for ideal gas systems at constant
T and P.

When mathematical techniques are introduced to support a theory, more insights
can often be readily established. Through a novel mathematical approach, we have
systemized chemical equilibrium with six theorems that are less reliant on thermo-
dynamics and thus established a new theoretical system from a different perspective.
There have been very few attempts in the literature to set up a system for equilib-
rium theorem mainly from mathematics. The mathematical treatments in the new
approach enabled us to provide more insight into and deeper understanding of chem-
ical equilibrium particularly in complex circumstance. The new approach not only
provides a new variety of treatment of equilibrium but also provides varieties of math-
ematical tools to deal with complicated cases. The theorems are coherent and use-
ful for ideal gas systems at constant T and P. While some of the theorems [6–8]
have been taken for granted over the years, we develop new ways of considering
them as an interconnected set and provide rigorous proofs. One of the prominent
features of this work is that it makes use of the Schwarz inequality which we have
initially used to provide simple proofs for basic equations and then subsequently
expanded to establish the complete coherent system. To the best of our knowledge,
the Schwarz inequality has not been used previously in this way. The whole sys-
tem relies on straightforward mathematics and less on thermodynamics. It provides
a new theoretical basis for a thorough and deep presentation of traditional chemical
equilibrium.
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2 Theorems and proofs

In part I, we first introduce six theorems, which provide a coherent mathematical
description of chemical equilibrium, together with their proofs. The six theorems
form a system that is most suitable to treat gaseous systems at constant T and P. In a
subsequent paper, designated here part II [9], we show how the theorems are connected,
and by their application establish the integrated nature of the system. Suitable examples
are provided there to elucidate the six somewhat abstract theorems. As an introduc-
tion, we first introduce the parameters used and the basic relationships between them
denoted in Eqs. 1–6. In a chemical reaction, the reaction quotient, defined in fraction
of moles, Qx

1, is defined by Eq. 1.

Qx =
N∏

i=1

xνi
i =

N∏

i=1

(
ni

nT

)νi

=
∏N

i=1 nνi
i

n�ν
T

= Nx

Dx
(1)

where Nx represents the numerator,
∏N

i=1 nνi
i , and Dx the denominator, n�ν

T . N is the
total number of species; i represents a species in a reacting system; ni is the number
of moles of species i (defined in Eq. 2 below); νi is the coefficient of species i in the
relevant balanced chemical equation, being positive when i is a product and negative
when it is a reactant. nT is the sum of the number of moles (defined in Eq. 3) and �ν is
the sum of all the coefficients νi in the balanced chemical equation (defined in Eq. 4).
p and r in Eq. 4 represent product and reactant respectively. xi is the mole fraction for
species i (defined in Eq. 5). n◦

i is the initial number of moles of species i and ζ is the
reaction extent.

ni = n◦
i + ζνi (2)

nT =
N∑

i=1

ni =
N∑
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(
n◦

i + ζνi
) =

(
N∑

i=1

n◦
i

)
+ ζ

N∑

i=1

νi =
(

N∑

i=1

n◦
i

)
+ �νζ (3)

�ν =
N∑

i=1

νi =
(
∑

p

νp

)
−
∑

r

|νr | (4)

xi = ni

nT
= n0

i + νiζ(∑
j n0

j

)
+ �νζ

= n0
i + νiζ(∑

j<i n0
j

)
+ n0

i +
(∑

j>i n0
j

)
+ �νζ

(5)

To show how these equations can be applied, we consider the reaction given below
in Eq. 6. Rows (i) and (ii) indicate the number of moles of the constituents at time 0

1 At equilibrium Qx is equal to the equilibrium constant Kx for an ideal gas system at constant P and T.
There are other forms of Q and K that could be used to develop the present theory, for example those based
on molar concentration namely Qc and Kc or on mole numbers (Qn, Kn). However, we have found that
Qx and Kx are the most useful for our purposes. Indeed, Qx has proved to be the essential quantity in
describing the equilibrium of an ideal gas system at constant P and T. The relationships between Qx, Kx
and Qc, Qn, Kc, Kn are given below: KP = KxP�ν and Qc = Qn/V�ν = Qx(P/RT)�ν since PV = nRT
and Pi = (ni/V)RT = [ni/(nTRT/P)]RT = xiP.
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and time t, respectively. The reaction extent ζ is time related.

a A(g) + bB(g) = cC(g) + d D(g) (6)

R 1 0 0 (i)
n A = R − aζ nB = 1 − bζ nC = cζ nD = dζ (i i)

The values of nT and Qx for this reaction can be readily calculated as shown in
Eqs. 7 and 8, respectively.

nT = n A + nB + nC + nD =
N∑

i=1

ni

= (R − aζ ) + (1 − bζ ) + cζ + dζ = (R + 1) + (c + d − a − b)ζ

= (
n◦

A + n◦
B + n◦

C + n◦
D

)+ �νζ =
(

N∑

i=1

n◦
i

)
+ �νζ (7)

Qx = xc
C xd

D

xa
Axb

B

=
N∏

i=1

xνi
i =

(
cζ
nT

)c ( dζ
nT

)d

(
R−aζ

nT

)a ( 1−bζ
nT

)b
= (nT )−�ν

N∏

i=1

(
n0

i + νiζ
)νi

(8)

Thus, values of Qx and nT for any reaction can be similarly calculated with reference
to the general form of Eqs. 1 and 3.

We now detail the six theorems that comprise our chemical equilibrium system.
All the theorems are based on the premise that the value of the reaction quotient Qx at
equilibrium is constant, defined as the equilibrium constant, Kx, whatever the initial
conditions.

Theorem 1 The reaction quotient increases or remains unchanged (i.e. never
decreases) as a reaction proceeds forward and decreases or remains unchanged (i.e.
never increases) as the reaction proceeds backward. [6,7]

Theorem 1 is important because it enables the direction of chemical shift to be
established. In an equilibrium for an ideal gas system at constant P and T, Qx can be
related to the equilibrium constant Kx. When Qx differs from Kx, then the reaction
extent ζ will be changed until Qx becomes equal to Kx. i.e. when Qx is greater than
Kx, the reaction extent will be changed to reduce Qx until it becomes equal to Kx.
When Qx is less than Kx, ζ , will be changed to increase Qx until it becomes equal to
Kx. The facts expressed by Theorem 1 can be described mathematically by Eq. 9.

(
∂ Qx

∂ζ

)

ni

≥ 0 (9)

Clearly, Theorem 1 means that a forward reaction always increases the product
of concentrations to the coefficient power of products

∏
p x

νp
p and decreases that of

123



J Math Chem (2013) 51:715–740 719

reactants
∏

r xνr
r while a backward reaction always decreases

∏
p x

νp
p and increases∏

r xνr
r . The validity of Theorem 1 is obvious for single phase liquid reactions. How-

ever, although it is taken for granted in most classical treatments that Theorem 1 is
universally applicable, this is not obviously true. For example, a change in reaction
extent ζ will affect both the numerator ni and the denominator nT in the expression of xi
for reactant or product (Eq. 5). Equation 9 can be developed in two ways (Appendix 1),
dependent on whether the denominator Dx or the numerator Nx of Qx (Eq. 1) is kept
constant with the results shown in Eqs. 10 and 11 respectively.

(
∂ Qx

∂ζ

)

Dx

=
N∑

i=1

Qxν
2
i

ni
> 0 (10)

Indeed as shown by Eq. 10, the forward reaction will increase Qx if we consider
only the numerator Nx of Qx in Eq. 1 because Dx is constant in Eq. 10. However, the
forward reaction will also have the effect of decreasing Qx because of the change in
Dx as shown in Eq. 11.

(
∂ Qx

∂ζ

)

Nx

= − Qx�ν2

nT
< 0 (11)

The effect shown in Eq. 11 is independent of whether �ν is positive or negative
because it involves the square of �ν. These two effects, described by Eqs. 10 and 11,
are opposite to each other. In order to show that Theorem 1 is correct, it is necessary to
prove that the effect shown in Eq. 10 is dominant as illustrated in Eq. 12. Equation 12
is an expanded form of Eq. 9. Some background information concerning Eq. 12 is
given in Appendix 1.

1

Qx

(
∂ Qx

∂ζ

)

n0
i

= 1

Qx

(
∂ Nx

Dx

∂ζ

)

Dx

+ 1

Qx

(
∂ Nx

Dx

∂ζ

)

Nx

=
(

N∑

i=1

ν2
i

ni

)
−
(∑N

i=1 νi

)2

∑N
i=1 ni

≥0

(12)

The forward reaction will increase Nx (Eq. 10) and as this effect is independent
of �ν, it will also increase Qx, while the effect of the forward reaction on Dx will
decrease Qx whatever the sign of �ν (Eq. 11). If �ν is positive, nT will increase, as
will Dx, because of the positive exponent. On the other hand, if �ν is negative, nT will
decrease by the forward reaction, but the change in Dx will still cause a decrease in
Qx because of the negative exponent. It is thus confirmed intuitively that on changing
ζ , the effects on the value of Qx of subsequent variations in Nx and Dx, are opposite.
The same situation occurs when ζ is decreased. Which of these two opposite effects,
shown in Eqs. 10 or 11, is greater is not easy to determine as it cannot be judged
intuitively. So it is necessary to provide a mathematical proof for Eq. 12 to show that
Theorem 1 is valid in all circumstances. Clearly a deductive proof would be preferable
but, to our knowledge, only one based on mathematical induction is to be found in the
literature [6]. We note that Eq. 12 is very similar to the Schwarz inequality [10–16]
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given as Eq. 13 and so have developed the deductive proof shown below. Detailed
information about the Schwarz inequality is given in Appendix 5.

(
N∑

i=1

a2
i

)
N∑

i=1

b2
i −

(
N∑

i=1

ai bi

)2

≥ 0 (13)

2.1 Proof P1 for Theorem 1

It should be noted that ni, nT, xi and Qx cannot be negative and are therefore ≥ 0. If
we define ai and bi as follows.

ai = √
ni ; bi = νi√

ni
(14)

By inserting the above definitions into Eq. 13, it can be seen that Eq. 12 is obtained,
as shown by Eq. 15.

[
N∑

i=1

(√
ni
)2
]

N∑

j=1

(
ν j√
n j

)2

−
(

N∑

i=1

√
ni

νi√
n j

)2

=
(

N∑

i=1

ni

)
N∑

j=1

ν2
j

n j
−
(

N∑

i=1

νi

)2

≥ 0 (15)

Since Eq. 12 can be rearranged in the form shown by Eq. 16, it is proven as indeed
is Eq. 9 and therefore Theorem 1 is validated.

1
∑N

i=1 ni

⎧
⎨

⎩

(
N∑

i=1

ni

)
N∑

j=1

ν2
j

n j
−
(

N∑

i=1

νi

)2
⎫
⎬

⎭ ≥ 0 (16)

Although the Schwarz inequality is trivial in mathematics, its application here to
chemical equilibrium provides significant new insights. After the connection between
the Schwarz inequality and Theorem 1 is realized, all proofs for the Schwarz inequality
found in the literature and repeated in Appendix 5, can be adapted to prove Theorem 1.
Several different proofs for Theorem 1 are given below, because although one Proof
P1, given above, is clearly sufficient to prove the theorem, in this case the alternatives,
Proofs P2, P3 and P4, provide useful elucidation of different chemical concepts.
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2.2 Proof P2 for Theorem 1

Theorem 1 can also be proved directly from Eq. 16 by expansion of the two terms in
the curly brackets via Eqs. 17 and 18 respectively.

(
N∑

i=1

ni

)
N∑

j=1

ν2
j

n j
=

N∑

j=1

(∑N
i=1 ni

)
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j

n j
=

N∑
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N∑
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ν2
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n j

)

=
∑

i

∑

j=i

niν
2
j

n j
+
∑

i

∑

j<i

niν
2
j

n j
+
∑

i

∑

j>i

niν
2
j

n j

=
∑

i

ν2
i +

∑

i

∑

j>i

(
n jν

2
i

ni
+ niν

2
j

n j

)
(17)

(
N∑

i=1

νi

)2

=
∑

i

ν2
i + 2

∑

i

∑

j>i

νiν j (18)

Using the results obtained in Eqs. 17 and 18 by inserting them back into Eq. 16,
and noting that ni cannot be negative, we obtain Eq. 19 and therefore Theorem 1 is
proved.

N∑

j=1

(∑N
i=1 ni

)
ν2

j

n j
−
(

N∑

i=1

νi

)2

=
∑

i

∑

j>i

(
niν j − n jνi

)2

ni n j
≥ 0 (19)

When Eq. 20 is satisfied for all i and j, the equals sign in Eq. 19 pertains.

ni

n j
= νi

ν j
(20)

So when Eq. 20 is true, then Eq. 19 is reduced to Eq. 21.

∑

i

∑

j>i

(niν j − n jνi )
2

ni n j
= 0 (21)

In this context, we note that there is an error in the proof for Eq. 12 given in ref. [6],
as it concludes with >0 rather than the correct ≥0 in the final equation. This error is
discussed further in Appendix 2. The equals sign does apply in some circumstances.
For example, if only one side of the chemical equation contains gaseous species, with
solid or liquid species on the other side, then Eq. 20 can be satisfied. If there is only
one active species in the reaction system, the validity of Eq. 21 is obvious from the
Schwarz inequality, Eq. 13. For example, when CaCO3 is decomposed to CaO and
CO2 at constant T and P, Qx is a constant with respect to the reaction extent. Theorem 1
can also be successfully used to analyze the equilibrium shift for the decomposition
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of CaCO3 if the pressure changes but this will not be detailed here. If gaseous species
exist on both sides, then Eq. 20 can never be satisfied since νi will have opposite signs
for reactant and product. Equation 20 is easily derived from Eq. 21. However, Eq. 20
cannot readily be obtained from Proof P1, which is an indication in this case of the
advantages of establishing multiple mathematical proofs.

2.3 Proof P3 for Theorem 1

Theorem 1 can also be validated by considering the simple chemical reaction described
by Eq. 6. From Eqs. 6 and 12 we can generate Eq. 22.

1

Qx

(
∂ Qx

∂ζ

)
= c + d

ζ
+ a2

R − aζ
+ b2

1 − bζ
− �ν2

1 + R + �νζ

= (c + d) (1 + R + �νζ) − �ν2ζ

ζ (1 + R + �νζ)
+ a2 (1 − bζ ) + b2 (R − aζ )

(R − aζ ) (1 − bζ )
(22)

From Eq. 22 we obtain

1

Qx

(
∂ Qx

∂ζ

)

R
= [1 + R + (a + b) ζ ] (c + d) − (a + b)2 ζ

ζ (1 + R + �νζ)

+
[
a2 (1 − bζ ) + b2 (R − aζ )

]
[1 + R + (c + d) ζ − (a + b) ζ ]

(1 + R + �νζ) (1 − bζ ) (R − aζ )

= [1 + R + (a + b) ζ ] (c + d)

ζ (1 + R + �νζ)
+
[
a2 (1 − bζ ) + b2 (R − aζ )

]
(c + d) ζ + k

(1 + R + �νζ) (1 − bζ ) (R − aζ )

(23)

where k is given by Eq. 24.

k = [1 + R − (a + b) ζ ]
[
a2 (1 − bζ ) + b2 (R − aζ )

]
− (a + b)2 (R − aζ ) (1 − bζ )

= [(1 − bζ ) + (R − aζ )]
[
a2 (1 − bζ ) + b2 (R − aζ )

]
− (a + b)2 (R − aζ ) (1 − bζ )

= a2 (1 − bζ )2 + b2 (R − aζ )2 − 2ab (R − aζ ) (1 − bζ )

= [a (1 − bζ ) − b (R − aζ )]2 = (a − bR)2 (24)

By inserting the value for k obtained in Eq. 24 back into Eq. 23, Eq. 25 is obtained.

1

Qx

(
∂ Qx

∂ζ

)

R
= [1 + R + (a + b) ζ ] (c + d)

ζ (1 + R + �νζ)

+
[
a2 (1 − bζ ) + b2 (R − aζ )

]
(c + d) ζ + (a − bR)2

(1 + R + �νζ) (1 − bζ ) (R − aζ )
≥ 0

(25)
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Since ζ(= nC/c, or nD/d), nA(= R − aζ ), nB(= 1 − bζ ), and nT are greater than
0, it is easy to see that the ≥ 0 relationship in Eq. 25 is justified. The advantage of this
Proof P3 is that it is based primarily on the initial mole ratio and so is consistent with
Theorem 5 as is demonstrated in part II of this work. A different derivation of Eq. 25
expressed in a more general form is given in Appendix 3.

2.4 Proof P4 for Theorem 1

Theorem 1 can also be proved by using concepts from thermodynamics in which for
example a chemical reaction can be described by Eq. 26.

(
∂G

∂ζ

)

T,P,n0
j

= RT ln Qx +
∑

i

νiμ
0
i (T, P) (26)

where the Gibbs energy G is a state variable, thus it is only a function of T, P and xj for
an ideal gas system. μ0

i is the standard chemical potential for species i. For an equi-
librium system at a constant T and P, the equilibrium value of Qx can be denoted by

Kx and as
(

∂G
∂ζ

)

T,P,n0
j

= 0 is satisfied when equilibrium is reached, we can simplify

Eq. 26 to generate Eq. 27.

0 = RT ln Kx +
∑

i

νiμ
0
i (T, P) (27)

which can be rearranged to give:

RT ln Kx = −
∑

i

νiμ
0
i (T, P) (28)

Differentiating Eq. 26 with respect to ζ for the system at any T and P, we obtain
Eq. 29.

RT

Qx

(
∂ Qx

∂ζ

)

T,P,n0
i

=
(

∂2G

∂ζ 2

)

T,P,n0
i

(29)

G is a minimum at equilibrium for an infinitesimal process at constant T and P.
It is implied by Eq. 30, i.e. if equilibrium has not been reached, that a spontaneous
reaction, either forward or back, will take place to reduce G to a minimum.

(
∂2G

∂ζ 2

)

T,P,n0
i

≥ 0 (30)

Inserting the thermodynamic formula of Eq. 30 into Eq. 29, we obtain Eq. 9 and
thus Theorem 1 is proved from thermodynamic principles. If a condensed phase is
involved, xi does not refer to the mole fraction in the condensed phase, rather it refers
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to the mole fraction of the gas that equilibrates with the condensed phase. But this
does not affect the validity of this proof since we are only concerned with Eq. 9.

Theorem 1 is also important because it enables the derivation of some thermo-
dynamic conclusions. For example, inserting Eq. 9 into Eq. 29, we obtain Eq. 30
since Qx is positive. Thus Eq. 30, which represents the thermodynamic condition for
spontaneous reaction, is proved from Eq. 9 which can be derived independently from
mathematics.

The above discussions are valid for gaseous systems at constant T and P. However,
even if P is changed, these conclusions concerning Qx are still relevant. For example,
Kp is always constant at constant T. If �ν > 0, then increasing P will decrease Kx
according to KP = KxP�ν , and Theorem 1 predicts that the equilibrium will shift
backwards to adjust the Qx to the new Kx. If �ν < 0, increasing P will increase Kx,
and Theorem 1 predicts that the equilibrium will shift forwards. From the behavior
of Qx, it is possible to subsequently expand the theory in a logical fashion to produce
our coherent theoretical system.

Theorem 2 Adding a species in a gaseous equilibrium system at constant temper-
ature and pressure will affect both the denominator Dx and the numerator Nx of Qx
(Eq. 1) and as a result it will cause two effects.

(2a) On increasing Dx by adding a reactive species, while theoretically2 supposing
Nx remains unchanged, the equilibrium would respond by shifting to the side of
the chemical equation for which the sum of coefficients is the greater.

(2b) Conversely on increasing Nx by adding a reactive species, while theoretically2

supposing Dx remains unchanged, the equilibrium would respond by shifting to
the side of reducing the amount of that species.

A corresponding formalism of Theorem 2 for removing a species from the equi-
librium system can be readily obtained. Let us consider the effect on Qx of changing
Dx and Nx in Proofs P5 and P6, respectively.

2.5 Proof P5 for Theorem 2a

By differentiating Qx with respect to ni while keeping Nx and the reaction extent con-
stant, Eq. 31 is obtained. The effect expressed in Eq. 31 is similar to that expressed
in Eq. 11 as it indicates that −�νdni

nT
represents the effect on Qx of changing Dx by

adding species i while keeping Nx and the reaction extent unchanged.

(
∂ Qx

∂ni

)

ζ,Nx

= −Qx (ni )
�ν

nT
(31)

It can be seen from Eq. 31 that the addition3 of species i will decrease Qx when
�ν > 0. Then, the forward reaction takes place according to Theorem 1 to restore

2 It should be noted that both 2a and 2b are theoretical situations. In practice when a reactive species is
added to a system, if Dx is increased, then Nx cannot remain unchanged and vice versa.
3 The same argument pertains for the alternative scenario when species i is removed from the equilibrium
but this is omitted here for simplicity.
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Qx to Kx. Adding species i will increase Qx when �ν < 0, and the backward reaction
will take place according to Theorem 1 to restore Qx to Kx. Thus, the result in both
cases is that adding species i will shift the equilibrium toward the side of the chemical
reaction with the greater sum of coefficients. Theorem 2a is thus proven.

The same result can be obtained from another point of view. Consider the effect of
changing dni on a system which is in equilibrium. If we only consider the effect of
changing Dx, the added species will dilute all the species. Hence if only this dilution
is considered and the effect of an increase in numerator ni on xi is ignored,

∏
j x

ν j
j ,

the product of concentrations to their coefficient powers, will be reduced more on the
side of the chemical equation with the larger sum of coefficients. Now if the reaction
responds according to Theorem 1, it will proceed toward the side with the larger sum
of coefficients in order to balance the changes caused by the addition. Theorem 2a, the
effect of changing the denominator of Qx on the shift in equilibrium, is thus proven
as previously and it can be expressed alternatively as:

(2a): On diluting an equilibrium system by adding an inert species, the equilibrium
will shift to the side of the chemical equation with the greater sum of coefficients.

2.6 Proof P6 for Theorem 2b

By differentiating Qx with respect to ni while keeping Dx and the reaction extent un-
changed, Eq. 32 is obtained. The effect expressed in Eq. 32 is similar to that expressed
in Eq. 10. Thus νi dni

ni
in Eq. 32 represents the effect of changing Nx by adding species

i, while keeping the reaction extent and Dx constant. Adding product i will increase
Qx since νi > 0, while on the other hand adding reactant i will decrease Qx since
νi < 0. Theorem 2b can thus be easily proved from Eq. 32 and Theorem 1.

(
∂ Qx

∂ni

)

ζ,Dx

= Qx (ni )
νi

ni
(32)

A more intuitive proof, relevant for chemists, is provided in Appendix 4. The sig-
nificance of Theorem 2 is discussed further in part II, sections 2.2.3.2 through to
2.2.3.5.

Theorem 3

(3a) The change of an intensive variable caused by changing its corresponding exten-
sive variable is smaller if chemical equilibrium is maintained than if no reaction
can take place in the system.

Theorem 3a can be stated alternatively as:

(3b) The change of an extensive variable caused by changing the corresponding
intensive variable will be larger if chemical equilibrium is maintained than if
no reaction can take place in the system.

By definition, an intensive variable is a variable that is only a function of the state
of the system, while an extensive variable is also a linear function of the amount of the
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species in the system. Theorem 3 [8] is more rigorous than the Le Chatelier principle
which is just a principle, not a theorem, since it is not universally valid. If an inten-
sive variable and an extensive variable are interconnected, they can be expressed in
a partial derivative containing the two variables. Considering the intensive variables
xi (or Qx) and pressure P respectively with their corresponding extensive variables ni
and volume V, Theorem 3 can be expressed innovatively by Eqs. 33– 35.

(
∂xi

∂ζ

)

ni

(
∂ζ

∂ni

)

Qx

(
∂ni

∂xi

)

ζ,n j

= −1 (33)

(
∂ Qx

∂ζ

)

n j

(
∂ζ

∂ni

)

Kx

(
∂ni

∂ Qx

)

ζ,n j

= −1 (34)

(
∂ P

∂ζ

)

S,V

(
∂ζ

∂V

)

S,A

(
∂V

∂ P

)

S,ζ

= −1 (35)

Here we provide a concise, uniform and elegant mathematical expression for The-
orem 3. Equations 33–35 express very basic mathematical rules for three related vari-
ables as shown in Proof 7. How these simple mathematical relationships relate to
the chemistry expressed in Theorem 3 are given in detail in Part II of this work
[9].

2.7 Proof P7 Eqs. 33–35 stand alone as a mathematical rule

In an equilibrium system, xi and Qx are functions of ni and ζ as expressed by Eqs. 36
and 37. P is a function of V, ζ , and entropy S as shown in Eq. 38.

xi = xi (ni , ζ ) = xi [ni , ζ(ni , Qx )] (36)

Qx = Qx (ni , ζ ) = Qx [ni , ζ(ni ,�G)] = Qx

[
n0

i , ζ
(

n0
i , Kx

)]
(37)

P = P(S, V, ζ ) = P [S, V, ζ(V, A)] (38)

Differentiating Eqs. 36–38, we obtain Eqs. 39–41, respectively.

dxi =
(

∂xi

∂ni

)

ζ

dni +
(

∂xi

∂ζ

)

ni

(
∂ζ

∂ni

)

Qx

dni (39)

d Qx =
(

∂ Qx

∂ni

)

ζ

dni +
(

∂ Qx

∂ζ

)

ni

(
∂ζ

∂ni

)

Kx

dni (40)

d P =
(

∂ P

∂V

)

S,ζ

dV +
(

∂ P

∂ζ

)

S,V

(
∂ζ

∂V

)

S,A
dV (41)

The mathematical relationships, described by Eqs. 33–35, can easily be obtained
by setting the left hand sides of Eqs. 39–41 equal to zero. Thus Theorem 3 is proven.
That d Qx = 0 in Eq. 40 specifies the condition for equilibrium shift which refers a

123



J Math Chem (2013) 51:715–740 727

transition from an old equilibrium state to a new one4. It is sometimes appropriate to

use
(

∂ζ
∂ni

)

Kx
, as in Eq. 40 instead of

(
∂ζ
∂ni

)

Qx
as in Eq. 39 to denote an equilibrium

system, since keeping Qx constant is equivalent to considering an equilibrium system

at Kx.
(

∂ζ
∂ni

)

Qx
is such a well-used mathematical expression that the above mentioned

property of Qx at equilibrium is easily overlooked.

Theorem 4 When a species is added to a system, the new equilibrium concentration
of that species will never decrease, independent of whether the chemical equilib-
rium is shifted to produce or to consume more of that species. When a species is
removed from a system, the new equilibrium concentration of that species will never
increase.

When a species has been added to a system, the chemical equilibrium can shift
either to produce or consume more of that species. However, the new equilibrium
concentration of that species can never be reduced to a value lower than the original
equilibrium value. Theorem 4 is therefore complementary to Theorem 3 in that it
defines the amount by which the chemical equilibrium can be shifted.

Theorem 4 is usually taken for granted as from Eq. 27 and Fig. 1 in ref. [17],
perhaps because of the intuitive belief that adding a species to an equilibrium system
will definitely result in an increase in its concentration. But this is not obvious. The
proof for Theorem 3 given in ref. [8] is correct only because Theorem 4 is assumed
to be true. If Theorem 4 is not true, then the proof for Theorem 3 in ref. [8] cannot be
valid. Theorem 4 can be formulated from Eq. 42 while keeping Qx constant which is
equivalent to keeping Qx = Kx as an equilibrium condition. This proof also involves
the Schwarz inequality.

4 From theorem 4 and Eq. 39 we note that dxi
dni

=
(

∂xi
∂ni

)

Qx
≥ 0 must be satisfied for an equilibrium

shift to occur. However the maximum ability of an equilibrium shift to reduce the change in xi by adding

a species occurs when dxi
dni

=
(

∂xi
∂ni

)

Qx
= 0. dxi

dni
=
(

∂xi
∂ni

)

Qx
< 0 is impossible for an equilibrium shift

by theorem 4. The same discussion applies to Eq. 41. Since
(

∂xi
∂ni

)

ζ,n j
in Eq. 33 and

(
∂ Qx
∂ζ

)

n j
in Eq. 34

are always positive and
(

∂ P
∂V

)

s,ζ
is always negative, Eq. 33–34 can be written similarly to Eqs. 1, 3, and 5

in part II of this work, e.g. as:

(
∂xi

∂ζ

)

ni

(
∂ζ

∂ni

)

Qx

< 0 (II-1)

(
∂ζ

∂ni

)

Kx

(
∂ni

∂ Qx

)

ζ,n j

< 0 (II-3)

(
∂ P

∂ζ

)

S,V

(
∂ζ

∂V

)

S,A
> 0 (II-5)
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2.8 Proof P8 for Theorem 4

From Eqs. 39 and 40 for constant Qx we can generate Eq. 42.

(
∂xi

∂ni

)

Qx

=
(

∂xi

∂ni

)

ζ

+
(

∂xi

∂ζ

)

ni

(
∂ζ

∂ni

)

Qx

=
(

∂xi

∂ni

)

ζ

−
(

∂xi

∂ζ

)

ni

(
∂ Qx

∂n0
i

)

ζ(
∂ Qx
∂ζ

)

n0
i

(42)

From Eq. 5 we can obtain Eqs. 43 and 44.

(
∂xi

∂n0
i

)

ζ

=

⎛

⎜⎜⎝

∂
n0

i +νi ζ(∑
j n0

j

)
+�νζ

∂n0
i

⎞

⎟⎟⎠

ζ

= 1 − xi

nT
> 0 (43)

(
∂xi

∂ζ

)

n j

=

⎛

⎜⎜⎝

∂
n0

i +νi ζ(∑
j n0

j

)
+�νζ

∂ζ

⎞

⎟⎟⎠

n j

= xi

(
νi

ni
− �ν

nT

)
(44)

Inserting Eqs. 43, 44, 59, and 82 into 42, we obtain 45.

(
∂xi

∂ni

)

Qx

= 1 − xi

nT
− νi − �νxi

nT

(
∂ Qx
∂n0

i

)

ζ(
∂ Qx
∂ζ

)

n0
i

= 1 − xi

nT
− νi − �νxi

nT

Qx
νi −�νxi

ni

Qx
nT

[
∑

i ni
∑

j
ν2

j
n j

− (∑
i νi
)2
]

= 1 − xi

nT
− (νi − �νxi )

2

nT ni

[
∑

j
ν2

j
n j

− �ν2
nT

] =
(1 − xi )

[
∑

j
ν2

j
n j

− �ν2

nT

]
− (νi −�νxi )

2

ni

nT

[
∑

j
ν2

j
n j

− �ν2
nT

]

=

[
∑

j
ν2

j
n j

− �ν2

nT

]
−
[

xi
∑

j �=i
ν2

j
n j

+ �νi
2

nT

]
+ �xi

�ν2

nT
− ν2

i
ni

+ �ν·νi
nT

+ �νi
2+νi

∑
j �=i ν j

nT
− �xi

�ν2

nT

nT

[
∑

j
ν2

j
n j

− �ν2
nT

]

=
(1 − xi )

∑
j �=i

ν2
j

n j
+ �ν(νi −�ν)

nT
+ νi

∑
j �=i ν j

nT

nT

[
∑

j
ν2

j
n j

− �ν2
nT

] =
(1 − xi )

∑
j �=i

ν2
j

n j
− �ν

∑
j �=i ν j

nT
+ νi

∑
j �=i ν j

nT

nT

[
∑

j
ν2

j
n j

− �ν2
nT

]

=
nT −ni

nT

∑
j �=i

ν2
j

n j
−
(∑

j �=i ν j

)2

nT

nT

[
∑

j
ν2

j
n j

− �ν2
nT

] =
∑

j �=i n j
∑

j �=i
ν2

j
n j

−
(∑

j �=i ν j

)2

nT

⎡

⎣∑
j n j

∑
j

ν2
j

n j
−
(
∑

j
ν j

)2
⎤

⎦

≥ 0 (45)
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Thus, from Eq. 15 we obtain

(
∂xi

∂ni

)

Qx

≥ 0 (46)

For an ideal gas equilibrium system at constant T and P, Kx is a constant. The fact
that Qx is kept constant, as shown in Eq. 46, gives the required condition for a system
at equilibrium since Qx is equal to Kx. Thus, the condition that keeps Qx constant is
just the condition for equilibrium shift since the shift represents a displacement from
an old equilibrium state to a new one. The ≥ specification in Eq. 46 indicates that
when a small amount of i is added, the new equilibrium concentration can never be
lower than the old and that when a small amount of i is removed, the new equilib-
rium concentration can never be higher than the old. By reference to Eq. 15, we know
that the final inequality as shown in Eq. 45 is valid. Thus Theorem 4 is proven. Two
additional mathematical forms of Theorem 4 for an ideal gas system are described by
Eqs. 47 and 48. The derivations are simple and not given here. Equation 47 describes
the effects on molarity Ci of adding species i in an ideal gaseous equilibrium system
at constant temperature and pressure.

(
∂Ci

∂ni

)

T,P,Q p

=
(

∂Ci

∂ni

)

T,P,ζ

+
(

∂Ci

∂ζ

)

T,P,ni

(
∂Ci

∂ni

)

T,P,Q p

= 1

V

⎡

⎣1 −
ν2

i
ni

∑N
i=1

ν2
i

ni

⎤

⎦ ≥ 0

(47)

where Qp represents Q expressed in partial pressure. Equation 47 signifies that the
reaction can never reduce Ci to a value lower than the original equilibrium value when
species i is added. For an equilibrium system of an ideal gas at constant temperature

(
∂ P

∂V

)

T,Q p

=
(

∂ P

∂V

)

T,ζ

+
(

∂ P

∂ζ

)

T,V

(
∂ζ

∂V

)

T,Q p

= P

V

⎡

⎣
�ν2

nT

∑N
i=1

ν2
i

ni

− 1

⎤

⎦ ≤ 0

(48)

An increase in V will decrease P if the equilibrium is frozen. An equilibrium shift
will increase P in order to decrease the change in this intensive variable as stated
by Theorem 3. Equation 48 establishes that the equilibrium shift can never raise the
pressure higher than the original equilibrium value.

Theorem 5 A property of a chemical equilibrium for a closed system is independent
of whether an amount of species i is expressed at time t = 0 or at any subsequent
time t.

The significance of Theorem 5 is that the final effect of the equilibrium shift is the
same whether an amount of species i is added at time t = 0 or at any subsequent time t.
i.e. the original equilibrium system together with the subsequently added amount and
the final total equilibrium system can be considered as the same closed system whether
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the addition is at time 0 or at time t which just represent two different expressions of
the same closed system. Thus, the theorem might be considered as trivial. However,
it has not previously appeared in the literature and it has useful implications as can be
seen from the discussions detailed in part II, sections 2.3.1 and 2.3.2.

2.9 Proof P9 for Theorem 5

For an equilibrium system, ζ is a function of ni and Qx.

ζ = ζ
[
ni

(
n0

i , Qx

)
, Qx

]
(49)

If we consider Qx and ζ as an example, then from Eqs. 37 and 49, an equilibrium
property can be expressed involving ni or n0

i with derivatives as shown by Eqs. 50–52
with the chain rule using Eq. 2 that ni = n◦

i + ζνi and Eq. 49.

(
∂ζ

∂n0
i

)

ζ,Qx

=
(

∂ζ

∂ni

)

ζ,Qx

(
∂ni

∂n0
i

)

ζ,Qx

=
(

∂ζ

∂ni

)

ζ,Qx

(50)

(
∂ Qx

∂n0
i

)

ζ

=
(

∂ Qx

∂ni

)

ζ

(
∂ni

∂n0
i

)

ζ

=
(

∂ Qx

∂ni

)

ζ

(51)

(
∂ Qx

∂ζ

)

n0
i

=
(

∂ Qx

∂ζ

)

ni

(52)

It can be seen from this proof that any relationships obtained via Eq. 2 such as those
described in Eqs. 50–52 conform to Theorem 5, i.e. independent of whether the initial
n0

i at time 0 or the final equilibrium ni is considered.

Theorem 6 The optimum conditions for maximizing the mole fraction of a target
product p in a chemical reaction are that the ratios of the initial number of moles
for reactants and products are equivalent to the ratio of their coefficients in the bal-
anced chemical equation, respectively, ignoring product p. There are no conditions
governing the initial number of moles between reactant and product.

Even though the optimum conditions for maximizing the mole fraction of a product
and fractional conversion are different chemically, they are closely related mathemat-
ically. We can show that Theorem 6 which gives the conditions for maximizing the
mole fraction of a product is expressed mathematically by Eq. 53 which is similar both
to Eq. 20 and to the condition for maximizing the fractional conversion of a reactant
as will be discussed in part II of this work.

n j

nk
= ν j

νk
j �= p; k �= p (53)

The coefficients νj and νk have opposite signs for reactant and product. So, Eq. 53
only applies between reactant and reactant or between product and product but not
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between reactant and product. This is reasonable because if the optimum condition is
met at t = 0, then according to Theorem 5 the final result will be the same as if the
reaction started at time t. So, Eq. 53 represents a much more general condition and
there is no condition governing the ratio between reactant and product.

2.10 Proof P10 for Eq. 53

Equation 53, which is valid for any type of reaction, is proved below by the Lagrange
multiple constant method which requires a variable to be optimized and necessitates
some constraints. Here only one constraint is needed, namely that Qx = Kx. In this
case, xp is the required variable to be optimized with respect to the initial condition
n0

j .

L
(

n0
i , ζ

)
= x p + λ (Qx − Kx ) = n p

nT
+ λ (Qx − Kx ) (54)

The Lagrange function (Eq. 54) for the conditional maximum xp at constant Qx is
constructed from Eqs. 1 and 5. λ is an arbitrary constant to be determined.

L
(

n0
i , ζ

)
= n0

p + νpζ(∑
i n0

i

)+ �νζ
+ λ

{ ∏
i

(
n0

i + νiζ
)νi

[(∑
i n0

i

)+ �νζ
]�ν

− Kx

}
(55)

where p represents a product. The proof starts from arbitrary initial concentrations.
The conditional optimum conditions are specified by Eqs. 56 and 57, obtained by
differentiating Eq. 55, which are equivalent but refer to the different species j and k,
respectively.

(
∂L

∂n0
j

)

ζ

=
(

∂x p

∂n0
j

)

ζ

+ λ

(
∂ Qx

∂n0
j

)

ζ

= − x p

nT
+ λQx

ν j nT − �νn j

nT n j
= 0 (56)

(
∂L

∂n0
k

)

ζ

=
(

∂x p

∂n0
k

)

ζ

+ λ

(
∂ Qx

∂n0
k

)

ζ

= − x p

nT
+ λQx

νknT − �νnk

nT nk
= 0 (57)

where j and k represent any species other than p. Subtracting Eq. 56 from Eq. 57, we
generate Eq. 58, from which Eq. 53 can be obtained.

λQx
ν j nT − �νn j

nT n j
− λQx

νknT − �νnk

nT nk
= 0

ν j nT − �νn j

νknT − �νnk
= n j

nk
(58)

Equation 53 can be derived from Eq. 58. Thus Theorem 6 is proven. A more extensive
discussion for Theorem 6 is provided in part II, section 2.3.3.
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3 Conclusions

A variety of mathematical approaches are developed here to systemize chemical equi-
librium theory coherently and elegantly by six theorems representing the basic core of
equilibrium theory. The system relies less on thermodynamics than on straightforward
mathematics. The advantages of using different mathematical approaches are shown.
Theorem 1 has been formulated in an original fashion using the Schwarz inequality
as shown in Eq. 15. In Theorem 2 we have extracted two fundamental effects by
mathematical logic. Theorem 3 is also presented with an abstract and elegant mathe-
matical presentation. Theorem 4 is usually taken for granted in the literature [17,18]
but rigorous mathematical proofs are provided in this paper. We show that Theorem 4
is mathematically related to Theorem 1 by the Schwarz inequality via Eqs. 15 and 45.
Theorem 4 is complementary to Theorem 3 in that it specifies how far an equilibrium
can shift. Theorem 5 states that the properties of an equilibrium for a closed system
can be expressed for any evolving state in a variety of ways. The conditions for the
maximum equilibrium concentration of a product in Theorem 6 are derived more gen-
erally from the Lagrange multiple constant method. Although all the mathematical
methods adopted are straightforward, they are applied innovatively here to chemical
equilibrium. In part II of this work, the interconnection between the theorems and the
significance of the system formed by the theorems is discussed elegantly and more
examples are given to give an intuitive perception of the abstract theorems introduced
here. This work demonstrates that new research in a traditional field, generally thought
to have been completed, can still offer new insights [19–21].
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Appendix 1

Different proofs for Eq. 12.

Proof PA1 Method 1 for the derivation of Eq. 12

Differentiating Eq. 1 with respect to ζ gives Eq. 59.

[
∂ Qx (ni )

∂ζ

]

ni

=
[

∂ Qx
(
n0

i + νiξ
)

∂ζ

]

n0
i

=

⎡

⎢⎢⎣

∂

(∏N
i=1 n

νi
i

n�ν
T

)

∂ζ

⎤

⎥⎥⎦

n0
i

=
N∑

i=1

[
ν2

i

ni

nνi
i

∏
j �=i

(
n j
)ν j

(�nT )�ν

]
− (�ν)2 (nT )−�ν

∏
i (ni )

νi

nT
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=
(

N∑

i=1

ν2
i

ni
Qx

)
− (�ν)2 Qx

nT
= Qx

[(
N∑

i=1

ν2
i

ni

)
− �ν2

nT

]
(59)

Note that Eq. 59 is the sum of Eqs. 10 and 11.

Proof PA2 Method 2 for the derivation of Eq. 12

Taking logs on both sides of Eq. 1, we have

ln Qx (ni , ζ ) =
(

N∑

i=1

νi ln ni

)
− �ν ln nT

=
N∑

i=1

νi ln
(

n0
i + νiζ

)
− �ν ln

[(
N∑

i=1

n0
i

)
+
(

N∑

i=1

νi

)
ζ

]

=
N∑

i=1

νi ln
(

n0
i + νiζ

)
− �ν ln

[(
N∑

i=1

n0
i

)
+ �νζ

]
= ln Qx

(
n0

i , ζ
)

(60)

Differentiating Eq. 60 with respect to ζ , we obtain Eq. 61

1

Qx

(
∂ Qx

∂ζ

)

ni

=
(

N∑

i=1

ν2
i

ni

)
− �ν2

nT
(61)

The result specified in Eq. 61 is the same as that given by Eq. 12.

Proof PA3 method 3 for the derivation of Eq. 12

By series expansion of Eqs. 1, 62 is obtained.

Qx (ζ + dζ ) = Qx (ζ )

∏
i

(
1 + νi dζ

ni

)νi

(
1 + �νdζ

nT

)�ν
= Qx (ζ )

1 +∑N
i=1

ν2
i dζ

ni

1 + (�ν)2dζ
nT

(62)

On further expansion of Eqs. 62, 63 is obtained.

Qx (ζ + dζ ) = Qx (ζ )

(
1 +

N∑

i=1

ν2
i dζ

ni

)[
1 + (�ν)2 dζ

nT

]−1

Qx (ζ )

(
1 +

N∑

i=1

ν2
i dζ

ni

)[
1 − (�ν)2 dζ

nT

]

= Qx (ζ )

[
1 +

(
N∑

i=1

ν2
i dζ

ni

)
− (�ν)2 dζ

nT

]
(63)
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Equation 63 can be rearranged to give Eq. 64.

(
∂ Qx

∂ζ

)

ni

= lim
�ζ→0

Qx (ni + dni ) − Qx (ni )

dζ
= Qx (ni )

[(
N∑

i=1

ν2
i

ni

)
− (�ν)2

nT

]

(64)

One reason for the inclusion of Proof PA3 here is that the series expansion method
can also be applied to the proof of Theorem 2 as shown in Appendix 4.

From Eq. 62, it is clear that Qx
∑N

i=1
ν2

i
ni

, the first term on the right hand side of
Eq. 64, represents the effect of change in ζ on the numerator Nx of Qx while keeping the
denominator Dx constant, just as shown in Eq. 10; and that −Qx

�ν2

nT
, the second term

in the right hand side of Eq. 64, represents the effect of change in ζ on Dx while keeping
Nx constant, as shown in Eq. 11. These changes in Nx and Dx will always have opposite
effects on Qx as implied by the opposite signs shown in Eq. 64 or in Eqs. 10 and 11.

Appendix 2: Correction to the error in ref [6]

There is a minor error in the proof of Theorem 1 expressed in ref. [6] in which the
equal case is excluded from Eq. 9. Equation 65 is written in ref. [6] where reactants
are defined as 1, 2 and products as 3, 4.

ν2
1

n1
+ ν2

2

n2
+ ν2

3

n3
+ ν2

4

n4
>

(|ν3| + |ν4| − |ν1| − |ν2|)2

n3 + n4 + n1 + n2
(65)

It was then stated that this inequality will hold since Eq. 66 is valid.

ν2
3

n3
+ ν2

4

n4
≥ (|ν3| + |ν4|)2

n3 + n4
(66)

or

n2
4ν

2
3 + n2

3ν
2
4 ≥ 2n3n4ν3ν4

To exclude the possibility of the equals sign in Eq. 65, it was reasoned in ref. [6]
that the left hand side of Eq. 65 is greater than the left hand side of Eq. 66 from Eq. 67.

ν2
1

n1
+ ν2

2

n2
+ ν2

3

n3
+ ν2

4

n4
>

ν2
3

n3
+ ν2

4

n4
(67)

and that the right hand side of Eq. 65 is less than the right hand side of Eq. 66 as shown
in 68.
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(|ν3| + |ν4|)2

n3 + n4
>

(|ν3| + |ν4| − |ν1| − |ν2|)2

n3 + n4 + n1 + n2
(68)

However for certain sets of values, this equation does not hold. For example if:

n1 = n2 = n3 = n4 = ν3 = ν4 = 1, ν1 = ν2 = 4 (69)

Equation 68 is incorrect. Or indeed if:

n3 = n4 = ν3 = ν4 = 0, n1 = n2 = ν1 = ν2 = 1 (70)

Equation 65 is also incorrect since both ν1 and ν2 or both ν3 and ν4 could be zero as is
the case in the example of the decomposition of CaCO3 considered previously when
discussing Theorem 1. Under these circumstances and when Eq. 20 is satisfied, the >
sign in Eq. 65 is replaced with an equal sign. Thus in general, the > sign should be
replaced by an ≥ sign.

Appendix 3: A variant of Eq. 25

In the main text, Eq. 25 is expressed in terms of moles and is developed from Eqs. 6
and 12. A more general expression of Eq. 25, detailed below, can be obtained from
Eq. 19, which is a natural consequence of Theorem 5.

First, we obtain Eq. 71 from Eqs. 12 and 19.

nT

Qx

(
∂ Qx

∂ξ

)

n0
j

=
∑

r

∑

r ′>r

(νr nr ′ − νr ′nr )
2

nr nr ′
+
∑

r

∑

p

(
νr n p − νpnr

)2

nr n p

+
∑

p

∑

p′>p

(
νpn p′ − νp′n p

)2

n pn p′
(71)

We then define Eqs. 72–75 using Eqs. 2 and 6.

nrνr ′ − nr ′νr =
(

n0
r + νrζ

)
νr ′ −

(
n0

r ′ + νr ′ζ
)

νr

= n0
r νr ′ − n0

r ′νr (72)

nrνp − n pνr =
(

n0
r + νrζ

)
νp − (

0 + νpζ
)
νr = νpn0

r (73)

n pνp′ − n p′νp = (
0 + νpζ

)
νp′ − (

0 + νp′ζ
)
νp = 0 (74)

∑

p

ν2
p

n p
=
∑

p

νpνp(
0 + νpζ

) =
∑

p

νp

ζ
(75)

By inserting Eqs. 72 through 74 into 71, we obtain

nT

Qx

(
∂ Qx

∂ζ

)

n0
j

=
∑

r

∑

r ′>r

(
νr n0

r ′ − νr ′n0
r

)2

nr nr ′
+
∑

r

∑

p

(
n0

r

)2
ν2

p

nr n p
(76)
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Using Eq. 75 we have

∑

r

∑

p

(
n0

r

)2
ν2

p

nr n p
=
(
∑

p

��νpνp

0 +��νpζ

)
∑

r

(
n0

r

)2 − ν2
r ζ 2 + ν2

r ζ 2

nr

=
(
∑

p

νp

)
∑

r

[(
n0

r − νrζ
)

ζ

�����(
n0

r + νrζ
)

��nr

]
+ ζ �2

(
∑

p

νp

��ζ

)
∑

r

ν2
r
∏

r ′ �=r nr ‘
∏

r ′′ nr ′′

(77)

By inserting Eqs. 77 into 76, we obtain Eq. 78.

nT

Qx

(
∂ Qx

∂ζ

)

n0
j

=
∑
r

∑
r ′>r

(
n0

r νr ′ − n0
r ′vr

)2∏
r ′′ �=r,r ′ nr ′′ + ζ

(∑
p νp

)∑
r

(
ν2

r
∏

r ′ �=r nr ′
)

∏
r nr

+
(
∑

p

νp

)
∑

r

n0
r − νr ζ

ζ
≥ 0 (78)

By applying the general form of Eq. 78 to the special case of Eqs. 6, then 25 is
obtained.

Appendix 4: Proof PA4 for Theorem 2

In the proof of Theorem 2, the series expansion of Qx as shown in Proof PA3 can be
used.

Qx (ni + dni ) = (ni + dni )
νi
∏N

j �=i n
ν j
j

(
nT + dn j

)�ν
=
(

1 + dni
ni

)νi ∏N
j n

ν j
j

(
1 + dn j

nT

)�ν

n�ν
T

= Qx (ni )

(
1 + dni

ni

)νi

(
1 + dni

nT

)�ν

= Qx (ni )

(
1 + νi dni

n j

)

(
1 + �νdni

nT

) (79)

Just like the derivation of Eq. 64 from Eq. 62, further expansion of Eq. 79 leads to
Eq. 80.

Qx (ni + dni ) = Qx (ni )

(
1 + νi dni

n j

)

(
1 + �νdni

nT

) = Qx (ni )

(
1 + νi dni

ni

)(
1 + �νdni

nT

)−1

= Qx (ni )

(
1 + νi dni

ni

)(
1 − �νdni

nT

)
= Qx (ni )

(
1 + νi dni

ni
− �νdni

nT

)

(80)

Equation 80 can be written in derivative form as Eq. 81 which can also be obtained
by conventional derivative techniques as shown in Proof PA1.
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(
∂ Qx

∂ni

)

ζ

= lim
�n j →0

Qx (ni + dni ) − Qx (ni )

dni

= Qx (ni )

(
νi

ni
− �ν

nT

)
= Qx (ni )

�ν

ni

( νi

�ν
− xi

)
(81)

Multiplying through, Eq. 81 is expanded to Eq. 82.
(

∂ Qx

∂ni

)

ζ

= Qx (ni )
νi

ni
− Qx (ni )

�ν

nT
= Qx (ni )

(
νi − �νxi

ni

)
(82)

From an inspection of Eqs. 79–82, it can be concluded that the second term on the
right hand side of Eq. 82 is related to the �νdni

nT
term in the denominator of the last

term in Eq. 79. This term represents the effect on Qx of changing the denominator
Dx of Qx by adding species i while keeping the numerator Nx and the reaction extent
unchanged and can be represented by Eq. 31.

Similarly the first term on the right hand side of Eq. 82 is related to the νi dni
ni

term in
the numerator of the last term in Eq. 79. It represents the effect on Qx of changing the
numerator by adding i while keeping constant both the reaction extent and the denom-
inator and can therefore be represented as Eq. 32 from the conventional differentiation
technique.

The two effects shown by Eqs. 31 and 32 are thus revealed more explicitly by
series expansion techniques as shown in Eq. 79. It shows that different mathematical
methods have specific merits.

Appendix 5: Proofs of the Schwarz inequality

Since the proofs will be unfamiliar to many chemists, we provide details here. The
following four proofs are, in our view, more understandable for chemists than those
given in the literature. [10,11]

Proof PA5 for the Schwarz inequality

Suppose the components of two vectors are:

	A = (
a1 a2 . . . ai . . . aN

)
(83)

	B = (
b1 b2 . . . bi . . . bN

)
(84)

then

	A · 	B =
∣∣∣ 	A
∣∣∣ ·
∣∣∣ 	B
∣∣∣ cos

∧
AB

a1b1 + a2b2 + · · · + ai bi + · · · + aN bN

=
√

a2
1 + a2

2 + · · · + a2
i + · · · + a2

N

√
b2

1 + b2
2 + · · · + b2

i + · · · + b2
N cos

∧
AB

(85)
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Square both sides and note that because cos
∧

AB ≤ 1, the Schwarz inequality (Eq. 13)
is proved.

Proof PA6 for the Schwarz inequality

Let

yi = ai√∑
j a2

j

; zi = bi√∑
j b2

j

(86)

Since

2yi zi ≤ y2
i + z2

i (87)

So

2
∑

i

yi zi ≤
∑

i

y2
i +

∑

i

z2
i (88)

and

2
∑

i

⎛

⎝ ai√∑
j a2

j

· bi√∑
j b2

j

⎞

⎠ ≤
∑

i

⎛

⎝ ai√∑
j a2

j

⎞

⎠
2

+
∑

i

⎛

⎝ bi√∑
j b2

j

⎞

⎠
2

= 2

(89)

thus

∑

i

ai bi ≤
√∑

j

a2
j

√∑

j

b2
j (90)

Square both sides and the Schwarz inequality (Eq. 13) is proved.

Proof PA7 for the Schwarz inequality

This proof is related to Proof P2 for Eq. 19.

(
∑

i

ai bi

)2

=
∑

i

a2
i b2

i +
∑

i

∑

j<i

ai bi a j b j +
∑

i

∑

j>i

ai bi a j b j

=
∑

i

a2
i b2

i + 2
∑

i

∑

j>i

ai bi a j b (91)
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∑

i

a2
i

∑

j

b2
j =

∑

i

a2
i b2

i +
∑

i

∑

j<i

a2
i b2

j +
∑

i

∑

j>i

a2
i b2

j

=
∑

i

a2
i b2

i +
∑

i

∑

j<i

(
a2

j b
2
i + a2

i b2
j

)
(92)

Subtracting Eqs. 91 from 92, we obtain Eq. 93

∑

i

∑

j>i

(
a2

j b
2
i + a2

i b2
j

)
− 2

∑

i

∑

j>i

ai bi a j b j

=
∑

i

∑

j>i

(
ai b j − a j bi

)2 ≥ 0 (93)

Proof PA8 for the Schwarz inequality

Since

λ2a2
i − 2ai biλ + b2

i = (λai − bi ) ≥ 0 (94)

So

λ2
∑

i

a2
i − 2λ

∑

i

(ai bi ) +
∑

i

b2
i =

∑

i

(λai − bi ) ≥ 0 (95)

The above inequality has the property

4

(
∑

i

ai bi

)2

− 4
∑

i

a2
i

∑

i

b2
i ≤ 0 (96)

which is the same as the Schwarz inequality.
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